Let I=∫cos(lnx)x3dx=∫cos(lnx)x2⋅dxx
Put lnx=t⇒1xdx=dt
I=∫e−2tcostdt=e−2tsint−∫sint(−2e−2t)dt=e−2tsint+2∫e−2tsintdt=e−2tsint+2I1 …(1)
Now, we have
I1=∫e−2tsintdt=e−2t(−cost)−∫(−cost)(−2e−2t)dt=−e−2tcost−2∫cost e−2tdt=−e−2tcost−2I
From equation (1),
I=e−2tsint+2[−e−2tcost−2I]⇒I=15e−2t(sint−2cost)+K⇒I=15x2[sin(lnx)−2cos(lnx)]+K
On comparing, we get
a=5,b=1,c=2
∴a+b+c=8