If ∫cos(lnx)x3dx=1ax2[bsin(lnx)−ccos(lnx)]+K, where K is the constant of integration, then the value of a+b+c is
A
8
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
7
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A8 Let I=∫cos(lnx)x3dx=∫cos(lnx)x2⋅dxx
Put lnx=t⇒1xdx=dt I=∫e−2tcostdt =e−2tsint−∫sint(−2e−2t)dt =e−2tsint+2∫e−2tsintdt =e−2tsint+2I1…(1)
Now, we have I1=∫e−2tsintdt=e−2t(−cost)−∫(−cost)(−2e−2t)dt =−e−2tcost−2∫coste−2tdt =−e−2tcost−2I
From equation (1), I=e−2tsint+2[−e−2tcost−2I] ⇒I=15e−2t(sint−2cost)+K ⇒I=15x2[sin(lnx)−2cos(lnx)]+K