wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

If cosθ5+7sinθ2cos2θdθ=Aloge|B(θ)|+C, where C is a constant of integration, then B(θ)A can be:

A
5(2sinθ+1)sinθ+3
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
5(sinθ+3)2sinθ+1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
2sinθ+1sinθ+3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
2sinθ+15(sinθ+3)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A 5(2sinθ+1)sinθ+3
I=cosθ5+7sinθ2+2sin2θdθ
Put sinθ=t,
cosθdθ=dt
I=dt2t2+7t+3
I=12dtt2+7t2+32=12dtt2+72t+(74)24916+2416
I=12dt(t+74)2(54)2
I=12×12×54ln∣ ∣ ∣ ∣⎢ ⎢ ⎢t+7454t+74+54⎥ ⎥ ⎥∣ ∣ ∣ ∣+C
I=15ln∣ ∣ ∣⎢ ⎢ ⎢t+12t+3⎥ ⎥ ⎥∣ ∣ ∣+C
Putting value of t back
I=15ln∣ ∣(sinθ+1/2sinθ+3)∣ ∣+C
On comparing we get,
B(θ)A=(2sinθ+1sinθ+3)15
B(θ)A=5(2sinθ+1sinθ+3)

flag
Suggest Corrections
thumbs-up
6
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
What Is a Good Fuel?
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon