If ∫dx(1+√x)2010=2α(1+√x)α−2β(1+√x)β+C, where C is arbitrary constant of integration and α,β>0, then
A
α=2009,β=2008
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
α=2008,β=2009
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
α=2010,β=2008
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
α=2009,β=2009
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Aα=2009,β=2008 Given : ∫dx(1+√x)2010
Let I=∫2√xdx2√x(1+√x)2010
Put 1+√x=t⇒12√xdx=dt I=2∫(t−1)dtt2010 =2∫(t−2009−t−2010)dt =2(t−2008−2008−t−2009−2009)+C I=22009(1+√x)2009−22008(1+√x)2008+C ∴α=2009 and β=2008