If ∫dx(1+√x)2010=2α(1+√x)α−2β(1+√x)β+C, where C is arbitrary constant of integration and α,β>0, then
A
|α−β|=1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
β+2(2010)2=1α+1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
β,α,2010 are in A.P.
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
α+1=β+1=2010
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Cβ,α,2010 are in A.P. I=∫dx(1+√x)2010 =∫2√xdx2√x(1+√x)2010
Put 1+√x=t ⇒12√xdx=dt
Then, I=2∫(t−1)dtt2010 =2∫(t−2009−t−2010)dt =2(t−2008−2008−t−2009−2009)+C =22009(1+√x)2009−22008(1+√x)2008+C ∴α=2009 and β=2008