Let I=∫dx(x2−9)√x+1
Substituting x+1=t2, dx=2tdt
Integral becomes,
I=∫2tdt((t2−1)2−9)t =∫2dt(t2−4)(t2+2) =13∫[1t2−4−1t2+2]dt =112ln∣∣∣t−2t+2∣∣∣−13√2tan−1(t√2)+C =112ln∣∣∣√x+1−2√x+1+2∣∣∣−13√2tan−1(√x+12)+C
⇒p=112, q=−13√2, f(x)=√x+1, g(x)=√x+12
So, p⋅f(3)+q⋅g(0)=0