I=∫dxsinx⋅cosx(tan9x+1) =∫dxtanx⋅cos2x(tan9x+1) =∫sec2x dxtanx(tan9x+1)
Put tanx=t⇒sec2x dx=dt
⇒I=∫dtt(t9+1) =∫dtt10(1+t−9)
Taking 1+t−9=y⇒−9t−10dt=dy
⇒I=∫dy−9y=−19ln|y|+C⇒I=−19ln|1+t−9|+C⇒I=−19ln∣∣∣(tanx)9+1(tanx)9∣∣∣+C
⇒I=19ln∣∣∣(sinx)9(sinx)9+(cosx)9∣∣∣+C
Hence, k=9⇒k2+1=82