If ∫dxx(lnx+(lnx)3) is equal to ln|lnx|−12ln(f(x)), then the value of f(e4) is:
(assume constant of integration to be zero.)
Open in App
Solution
I=∫dxx(lnx+(lnx)3)
Put lnx=y ⇒dxx=dy⇒I=∫dyy(y2+1)=∫dyy3(1+y−2)
Put y−2+1=t ⇒−2y−3dy=dt⇒dyy3=−dt2⇒I=∫−dt2t=−12ln|t|+C=−12ln∣∣1+y−2∣∣(∵C=0)=−12[ln|y2+1|−ln|y2|]⇒I=−12ln((lnx)2+1)+ln|lnx| ∴ We have, f(x)=(lnx)2+1 ⇒f(e4)=16+1=17