wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If dxx(lnx+(lnx)3) is equal to ln|lnx|12ln(f(x)), then the value of f(e4) is:
(assume constant of integration to be zero.)

Open in App
Solution

I=dxx(lnx+(lnx)3)
Put lnx=y
dxx=dyI=dyy(y2+1) =dyy3(1+y2)
Put y2+1=t
2y3dy=dtdyy3=dt2I=dt2t=12ln|t|+C =12ln1+y2 (C=0) =12[ln|y2+1|ln|y2|]I=12ln((lnx)2+1)+ln|lnx|
We have, f(x)=(lnx)2+1
f(e4)=16+1=17

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Theorems on Integration
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon