If ∫sin2xdxa2+b2sin2x=1b2log|f(x)|+C, then the difference of the maximum and minimum value of f(x) is
A
a2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
b2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
a2−b2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
a2+b2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Bb2 I=∫sin2xa2+b2sin2xdx;{put a2+b2sin2x=z⇒b2sin2xdx=dz ⇒I=1b2∫dzz=1b2ln|z|+C ⇒I=1b2ln|a2+b2sin2x|+C
So, f(x)=a2+b2sin2x
maximum value of f(x)=a2+b2, when sinx=1
minimum value of f(x)=a2, when sinx=0
so difference =(a2+b2)−a2=b2