If ∫(x−1)2x4+x2+1dx=1√atan−1(x2−1x√3)−b√atan−1(2x2+1√3)+C, then which of the following is/are CORRECT?
(where a,b are fixed constants and C is integration constant)
A
a2+b2=13
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
a2−b2=13
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
ab=6
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
ab=12
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Cab=6 I=∫(x−1)2x4+x2+1dxI=∫x2+1x4+x2+1dx−∫2xx4+x2+1dx
Dividing Nr and Dr by x2 =∫1+1x2x2+1+1x2dxI1−∫2x(x2)2+x2+1I2∴I1=∫1+1x2(x−1x)2+3dx
Let x−1x=t ⇒(1+1x2)dx=dt⇒I1=∫dtt2+(√3)2{∵∫1x2+a2dx=1atan−1(xa)+C}⇒I1=1√3tan−1t√3+C=1√3tan−1(x2−1√3x)+C⋯(i)
and I2=∫2x(x2)2+x2+1dx
Put x2=p ⇒2xdx=dpI2=∫dpp2+p+1=∫dp(p+12)2+(√32)2I2=2√3tan−1⎛⎜
⎜
⎜
⎜⎝2(x2+12)√3⎞⎟
⎟
⎟
⎟⎠⋯(ii) ∴I=1√3tan−1(x2−1x√3)−2√3tan−1(2x2+1√3)+C∴a=3,b=2
Therefore, a2+b2=9+4=13 a2−b2=9−4=5 ab=6