I=∫x2+4x4+16dx
Dividing Nr and Dr by x2
=∫1+4x2x2+16x2dx
=∫1+4x2x2+(4x)2−8+8
=∫1+4x2(x−4x)2+8dx
Let x−4x=t
⇒(1+4x2)dx=dt
∴I=∫dtt2+(2√2)2=12√2tan−1(t2√2)+C{∵∫1t2+a2dt=1atan−1(ta)+C}
=12√2tan−1⎛⎜
⎜
⎜⎝x−4x2√2⎞⎟
⎟
⎟⎠+C
=12√2tan−1(x2−4(2√2)x)+C
⇒k=2√2⇒k2=8