If ∫x2+4x4+16dx=1ktan−1(x2−4kx)+C, then k2=(where k is fixed constant and C is integration constant)
A
8.0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
8
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
8.00
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
8.000
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
I=∫x2+4x4+16dx
Dividing Nr and Dr by x2 =∫1+4x2x2+16x2dx =∫1+4x2x2+(4x)2−8+8 =∫1+4x2(x−4x)2+8dx
Let x−4x=t ⇒(1+4x2)dx=dt ∴I=∫dtt2+(2√2)2=12√2tan−1(t2√2)+C{∵∫1t2+a2dt=1atan−1(ta)+C} =12√2tan−1⎛⎜
⎜
⎜⎝x−4x2√2⎞⎟
⎟
⎟⎠+C =12√2tan−1(x2−4(2√2)x)+C ⇒k=2√2⇒k2=8