The correct option is C The range of f(x) is (0,1]
I=∫x2−x+1(x2+1)32exdx =∫ ex ⎡⎢⎣x2+1(x2+1)32−x(x2+1)32⎤⎥⎦dx =∫ex ⎡⎢⎣1√x2+1+⎧⎪⎨⎪⎩−x(x2+1)32⎫⎪⎬⎪⎭⎤⎥⎦dx ↓f(x) ↓f′(x) =∫ex[f(x)+f′(x)]dx,where f(x)=1√x2+1 =exf(x)+c=ex√x2+1+c
⇒f(1)=1√2
∵f(x)=f(−x)=1√x2+1
⇒f(x) is even function and the range of 1√x2+1 is (0,1]