If ∫x20181+x+x22!+⋯+x20182018!dx=m!x−m!ln|P(x)|+C for arbitrary constant of integration C, then
A
m=2019
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
m=2018
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
P(x)=1+x+x22!+⋯+x20182018!
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
P(x)=x+x22!+⋯+xm+1(m+1)!
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is CP(x)=1+x+x22!+⋯+x20182018! Let f(x)=1+x+x22!+⋯+x20182018! f′(x)=1+x1!+⋯+x20172017!
∫x20181+x+x22!+⋯+x20182018!dx =∫(2018)!(f(x)−f′(x))f(x)dx =(2018)!∫(1−f′(x)f(x))dx =2018!(x−ln|f(x)|)+C
Comparing with m!x−m!ln|P(x)|+C, m=2018 and P(x)=1+x+x22!+⋯+x20182018!