If ∫sec2x−2010sin2010xdx=P(x)(sinx)2010+c , where c is arbitrary constant then value of P(π3)
A
0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
1√3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
√3
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
3√32
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C√3 ∫sec2x−2010sin2010xdx=P(x)(sinx)2010+c Let I=∫sec2x−2010sin2010xdx ⇒I=∫sec2x.(sinx)−2010dx−2010∫(sinx)−2010dx ......(i) Let I1=∫sec2x.(sinx)−2010dx Integrating by parts, ⇒I1=tanx(sinx)2010+2010∫tanxcosx(sinx)2011dx+c =tanx(sinx)2010+2010∫dx(sinx)2010+c Putting this value in (i), we get ⇒I=tanx(sinx)2010+c ⇒tanx(sinx)2010+c=P(x)(sinx)2010+c P(x)=tanx ∴P(π3)=tanπ3=√3