If ∫esecx(secxtanxf(x)+(secxtanx+sec2x))dx=esecxf(x)+C, then a possible choice of f(x) is :
A
secx−tanx−12
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
secx+tanx+12
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
xsecx+tanx+12
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
secx+xtanx−12
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Bsecx+tanx+12 ∫esecx(secxtanxf(x)+(secxtanx+sec2x))dx=esecxf(x)+C Differentiating both sides, w.r.t. x, we get esecx(secxtanxf(x)+(secxtanx+sec2x))=esecx⋅secxtanxf(x)+esecxf′(x)