If ∫esin2xsinx(cosx+cos3x)dx=f(x)+C, where C is a constant of integration, then f(x) equals
A
12esin2x(3−sin2x)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
12esin2x(1−12cos2x)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
esin2x(3cos2x+2sin2x)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
esin2x(2cos2x+3sin2x)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A12esin2x(3−sin2x) I=∫esin2xsinx(cosx+cos3x)dx I=∫esin2xsinxcosxdx+∫esin2xsinxcos3xdx
Put sin2x=t⇒2sinxcosxdx=dt I=12∫etdt+12∫et(1−t)dt =∫etdt−12∫tetdt =et−12[tet−et]+C =32et−12tet+C =12(3−sin2x)esin2x+C