No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
12[x2F(x2)−∫F(x2)d(x2)]
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
12[x2F(x)−12∫(F(x))2dx]
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
12[x2F(x2)+∫F(x2)d(x2)]
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A12[x2F(x2)−∫F(x2)d(x2)] Given ∫f(x)dx=F(x)
Let I=∫x3f(x2)dx Put x2=t ⇒xdx=dt2 ⇒I=12∫tf(t)dt =12[t∫f(t)dt−∫(∫f(t)dt)dt][Integration by parts∫(u⋅v)dx=u∫vdx−∫(dudx∫vdx)dx] ⇒I=12[tF(t)−∫F(t)dt] ⇒I=12[x2F(x2)−∫F(x2)d(x2)]