If ∫f(x)sinxcosxdx=12(b2−a2)logf(x)+c, where c is the constant of integration, then f(x)=
A
2(b2−a2)sin2x
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
2absin2x
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
2(b2−a2)cos2x
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
2abcos2x
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C2(b2−a2)cos2x ∫f(x)sinxcosxdx=12(b2−a2)logf(x)+c differentiating with respect to x f(x)sinxcosx=12(b2−a2)⋅1f(x)⋅f′(x)f(x)2=1(b2−a2)sin2xf′(x)(b2−a2)sin2x=1f(x)2f′(x) integrating both the sides −(b2−a2)cos2x2=−1f(x)⇒f(x)=2(b2−a2)cos2x+c