wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If f(x)sinxcosxdx=12(b2a2) logf(x)+c, then f(x) is equal to

A
1a2sin2x+b2cos2x+k
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
1a2sin2xb2cos2x+k
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
1a2cos2x+b2sin2x+k
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
1a2cos2xb2sin2x+k
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B 1a2sin2x+b2cos2x+k
Given f(x)sinxcosxdx=12(b2a2)lnf(x)+c
Differentiating both sides, we get
f(x)sinxcosx=12(b2a2)1f(x)f(x)
f(x)(f(x))2=2(b2a2)sinxcosx
Using : sin 2x=2sinxcosx
f(x)(f(x))2=(b2a2)sin2x
Integrating both sides w.r.t. x, we get
f(x)(f(x))2dx=(b2a2)sin2xdx
Take f(x)=tf(x)dx=dt
dtt2=b2a22cos2x
1t=b2a22(cos2xsin2x)
1f(x)=b2cos2xb2sin2xa2cos2x+a2sin2x2
1f(x)=b2cos2xb2+b2cos2xa2+a2sin2x+a2sin2x2
1f(x)=b2cos2x+a2sin2xb2+a22=b2cos2x+a2sin2x+k, where k=a2+b22
f(x)=1a2sin2x+b2cos2x+k

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Transformations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon