Sum of Trigonometric Ratios in Terms of Their Product
If ∫ fxsin ...
Question
If ∫f(x)sinxcosxdx=12(b2−a2)logf(x)+c, then f(x) is equal to
A
1a2sin2x+b2cos2x+k
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
1a2sin2x−b2cos2x+k
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
1a2cos2x+b2sin2x+k
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
1a2cos2x−b2sin2x+k
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B1a2sin2x+b2cos2x+k Given ∫f(x)sinxcosxdx=12(b2−a2)lnf(x)+c Differentiating both sides, we get f(x)sinxcosx=12(b2−a2)1f(x)f′(x) f′(x)(f(x))2=2(b2−a2)sinxcosx
Using : sin2x=2sinxcosx f′(x)(f(x))2=(b2−a2)sin2x Integrating both sides w.r.t. x, we get ∫f′(x)(f(x))2dx=(b2−a2)∫sin2xdx
Take f(x)=t⇒f′(x)dx=dt
∴∫dtt2=−b2−a22cos2x
∴−1t=−b2−a22(cos2x−sin2x)
∴1f(x)=b2cos2x−b2sin2x−a2cos2x+a2sin2x2
∴1f(x)=b2cos2x−b2+b2cos2x−a2+a2sin2x+a2sin2x2
∴1f(x)=b2cos2x+a2sin2x−b2+a22=b2cos2x+a2sin2x+k, where k=−a2+b22 ⇒f(x)=1a2sin2x+b2cos2x+k