If ∫2Cosx−3Sinx3Sinx+2Cosxdx=Alog|3sinx+2cosx|+BX+C, then A=……….,B=…………,
A
1213,−513
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
113,−513
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
12,−513
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
1213,513
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is D1213,−513 ∫2cosx−3sinx3sinx+2cosxdx we will write the function in the numerator in the form N(x)=λ(D′(x))+μ(D(x)) Where N(x) is the numerator function and D(x)is denominator function. 2cosx−3sinx=λ(3cosx−2sinx)+μ(3sinx+2cosx) 2=3λ+2μ−3=−2λ+3μ}μ=−513;λ=1213 N(x)=1213(D′(x))−513D(x) ∫N(x)D(x)dx=123∫D′(x)dxD(x)−513∫D(x)D(x)dx =1213log|(D(x))|−513x+c =1213log(3sinx+2cosx)−513x+c A=1213; B=−513