If ∫3sinx+2cosx3cosx+2sinxdx=ax+bln|2sinx+3cosx|+c, then
A
a=−1213,b=1539
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
a=1713,b=613
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
a=1213,b=1539
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
a=−1713,b=−1192
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Ca=1213,b=1539 Let I=∫3sinx+2cosx2sinx+3cosxdx Multiply numerator and denominator by sec2x ∴I=∫2sec2x+3sec2xtanx3sec2x+2sec2xtanxdx=∫(2+3tanx)sec2x(3+2tanx)(1+tan2x)dx Put u=tanx⇒du=sec2xdx I=∫3u+2(2u+3)(1+t2)du=∫(5u+1213(u2+1)−1013(2u+3))du =113∫(5uu2+1+12u2+1)du−1013∫12u+3du =526log(u2+1)−513log(2u+3)+1213tan−1u+c =113(12x−5log(2sinx+3cosx))+c