If ∫4ex+6e−x9ex−4e−xdx=Ax+bln(9e2x−4)+C; then; value of A, B, & C are
A
A=−32,B=3536,CεR
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
A=32,B=−3536,CεR
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
A=−32,B=3536,C>0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
None of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is AA=−32,B=3536,CεR I=∫4e2x+69e2x−4dx, put 9e2x−4=z. Then I=∫1z{4.z+49+6}118dzz+49 =∫1z(z+4){2z+89+6}dz =19∫2z+35z(z+4)dz=19∫2(z+4)+27z(z+4)dz =29∫dzz+34∫(1z−1z+4)dz =(29+34)logz−34log(z+4)+C =3536log(9e2x−4)=34log(e2x)+C =−32×+3536log(9e2x−4)−32log3+C