I=∫cos2x+sin2x(2cosx−sinx)2dxDivide numerator and denominator by cos2x
I=∫1+2tanx(2−tanx)2dx=∫sec2x−tan2x+2tanx(2−tanx)2dx
=∫sec2x−tanx(tanx−2)(2−tanx)2dx=∫sec2x(2−tanx)2dx+∫tanx2−tanxdx=I1+I2
Where
I1=∫sec2x(2−tanx)2dx
Put t=tanx
I1=∫dt(2−t)2=12−t=12−tanx
And
I2=∫tanx2−tanxdx=∫sinx2cosx−sinxdx
Put sinx=a(2cosx−sinx)+b(−2sinx−cosx)
Equating coefficients of sinx and cosx, we get
0=2a−b and 1=−a−2b, on solving we get a=−1/5 and b=−2/5
I2=−15∫2cosx−sinx2cosx−sinxdx−25∫−2sinx−cosx2cosx−sinxdx
I2=−15x−25log|2cosx−sinx|+c
Therefore
I=12−tanx−15x−25log|2cosx−sinx|+c
Hence A=345