The correct option is C t=ex+e−x,u=ex−e−x
∫e4x−1e2xlog(e2x+1e2x−1)dx
=(log(e2x+1e2x−1)(e2x2+e−2x2))−∫(e2x2+e−2x2)ddx(e2x+1e2x−1)e2x+1e2x−1dx
=log(e2x+1e2x−1)(e2x−e−2x2)−∫(e2x2+e−2x2)(−e2x(e2x+1)(e2x−1))dx
=t22logt−t44−u22logu+u24+c
Where t=ex+e−x and u=ex−e−x