The correct option is D 3
Given ∫ex(2−x2)(1−x)√1−x2dx=μex(1+x1−x)λ+C .....(1)
Consider I=∫ex(2−x2)(1−x)√1−x2dx
=∫ex(1+1−x2)(1−x)√1−x2dx
=∫ex(1−x)√1−x2dx+∫ex(1−x2)(1−x)√1−x2dx
=∫ex(1−x)√1−x2dx+∫ex√1+x1−xdx
Now, ddx(√1+x1−x)=1(1−x)√1−x2
So, our integral is of the form ∫ex(f′(x)+f(x))dx=exf(x)+C
Hence, I=ex(√1+x1−x)+C
So, equation (1) becomes
∴I=ex√1+x1−x+C
I=ex(1+x1−x)12+C
On comparing , we get
μ=1,λ=12
2(μ+λ)=2(1+12)=2×32=3