If ∫f(x)1−x3dx=log∣∣∣x2+x+1x−1∣∣∣A948√3tan−12x+1√3+C then A = ___,
where f(x) is a polynomial of second degree in x such that f(0)=f(1)=3f(2)=3.
Open in App
Solution
Let f(x)=ax2+bx+c From f(0)=f(1)=3f(2)=3, we get f(x)=−x2+x+3 Then I=∫−x2+x+31−x3=∫(2x+2x2+x+1−1x−1)dx=∫(2x+1x2+x+1+1x2+x+1−1x−1)dx=log(x2+x+1)+2tan−1(2x+1√3)√3−log(x−1)+c=log(x2+x+1)x−1+2√3tan−1(2x+1√3)+c Therefore, A=1896