If ∫log(t+√1+t2)√1+t2dt=12(g(t))2+C where C is a constant, then g(2) is equal to
If f=x1+x2+13(x1+x2)3+15(x1+x2)5+... to ∞ and g=x−23x3+15x5+17x7−29x9+..., then f=d×g. Find 4d.
loge(n+1)−loge(n−1)=4a[(1n)+(13n3)+(15n5)+...∞] Find 8a.