The correct option is C A=−18,B=14√2
Let I=∫sinxsin4xdx=14∫cosxcos2xcos2xdx
=14∫cosx(1−sin2x)(1−2sin2x)dx
Substitute sinx=t
I=14∫dt(1−t2)(1−2t2)=14∫(21−2t2−11−t2)dt
=12.12√2log(1+√2t1−√2t)−18log(1+t1−t)+c
=14√2log(1+√2sinx1−√2sinx)−18log(1+sinx1−sinx)+c
⇒A=−18,B=14√2