I=∫sinxsin4xdx=∫sinx2sin2xcos2xdx=∫sinx2(2sinxcosx)cos2xdxI=∫14cosx(1−2sin2x)dx=14∫cosxdxcos2x(1−2sin2x)u=sinxdu=cosxdxI=14∫1(1−u2)(1−2u2)du
I=14∫2(1−u2)−(1−2u2)(1−u2)(1−2u2)duI=14∫[2(1−2u2)−1(1−u2)]duI=12∫11−(√2u)2du−14∫1(1−u2)du
We know that ;
∫1(1−x2)dx=12log∣∣∣1+x1−x∣∣∣+C
∴I=12∫11−(√2u)2du−14∫1(1−u2)duI=1212√2log∣∣∣1+√2u1−√2u∣∣∣−1412log∣∣∣1+u1−u∣∣∣+CI=14[1√2log∣∣∣1+√2u1−√2u∣∣∣−14log∣∣∣1+u1−u∣∣∣]+C
Comparing with the equation given in the question;
A3408=14∴A=34084=852.