If ∫x2−1(x2+1)√x4+1dx is equal to √24Atan−1(1√2√x2+1/x2)+C then A is equal to.
Open in App
Solution
I=∫x2−1(x2+1)√x4+1dx=∫1−1x2(x+1x)√x2+1x2dx Substituting t=x+1x⇒dt=(1−1x2)dx, we get I=∫dtt√t2−2=∫tdtt2√t2−2 Again substituting y2=t2−2, we get I=∫ydy(y2+2)y=1√2tan−1y√2+C=1√2tan−11√2⎛⎝√(x+1x)2−2⎞⎠+C=1√2tan−1(1√2√x2+1x2)+C⇒A=2