Let I=∫x4+x3+5x2+x+3(x+1)(x2−x+1)2dx
A(x+1)+Bx+Cx2−x+1+Dx+E(x2−x+1)2=x4+x3+5x2+x+3(x+1)(x2−x+1)2∴x4+x3+5x2+x+3=A(x2−x+1)2+(Bx+C)(x+1)(x2−x+1)+(Dx+E)(x+1)
Put x=1 we get 9A=9⇒A=1
Similarly on solving we get b=0,C=1,D=2,E=1
∴I=∫⎛⎝⎡⎣1x+1+1Cx−12⎤⎦+(√32)2+2x+1(x2−x+1)dx⎞⎠
=log(x+1)+2√3tan−12x−1√3+∫2x−1+2(x2−x+1)dx