The correct option is D v(x)=3−(6x+1)
Let I=∫(3x2+x−2)sin2(3x+1)dx=12∫(3x2+x−2)(1−cos(6x+2)).
Now applying the formula in comprehension, the last integral can be written as
12[x3+x22−2x]
−12[(3x2+x−2)sin(6x+2)6+(6x+1)cos(6x+2)36−sin(6x+2)6×36]+C
−12[x3+x22−2x]−18x2+6x−1372sin(6x+2)−172(6x+1)cos(6x+2)+C.