If ∫(e2x+2ex−e−x−1)e(ex+e−x)dx=g(x)e(ex+e−x)+c, where c is a constant of integration, then g(0) is equal to :
A
2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
e
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
e2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A2 e2x+2ex−e−x−1 =ex(ex+1)−e−x(e−x+1)+ex =[(ex+1)(ex−e−x)+ex]⋯(i) I=∫(e2x+2ex−e−x−1)e(ex+e−x)dx I=∫[(ex+1)(ex−e−x)+ex]e(ex+e−x)dx I=∫(ex+1)(ex−e−x)e(ex+e−x)dx+∫exe(ex+e−x)dx
Applying By-parts in first integral I=(ex+1)e(ex+e−x)−∫exe(ex+e−x)dx+∫exe(ex+e−x)dx I=(ex+1)e(ex+e−x)+C ∴g(x)=ex+1 ⇒g(0)=1+1=2