wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If 101(1+x)(2+x)x(1x)dx=kπ6(3+1), then the value of k is

Open in App
Solution

I=101(1+x)(2+x)x(1x)dx
Let x=sin2θdx=2sinθcosθdθ
So ,I=π/201(1+sin2θ)(2+sin2θ)dθ=2π/20(11+sin2θ12+sin2θ)dθ=2π/20(12cos2θ13cos2θ)dθ=2π/20(sec2θ2sec2θ1sec2θ3sec2θ1)dθ=2π/20(sec2θ2tan2θ+1sec2θ3tan2θ+2)dθ
Now let t=tanθdt=sec2θdθ
I=20(11+2t212+3t2)dt=2[12tan12t16tan132t]0=2[π22π26]=(31)π6=2π6(3+1)

So, k=2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Partial Fractions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon