I=1∫01(1+x)(2+x)√x(1−x)dx
Let x=sin2θ⇒dx=2sinθcosθdθ
So ,I=π/2∫01(1+sin2θ)(2+sin2θ)dθ=2π/2∫0(11+sin2θ−12+sin2θ)dθ=2π/2∫0(12−cos2θ−13−cos2θ)dθ=2π/2∫0(sec2θ2sec2θ−1−sec2θ3sec2θ−1)dθ=2π/2∫0(sec2θ2tan2θ+1−sec2θ3tan2θ+2)dθ
Now let t=tanθ⇒dt=sec2θdθ
∴I=2∞∫0(11+2t2−12+3t2)dt=2[1√2tan−1√2t−1√6tan−1√3√2t]∞0=2[π2√2−π2√6]=(√3−1)π√6=2π√6(√3+1)
So, k=2