If 1∫0e−x2dx=a and 1∫0x2e−x2dx=Ae+aB, then A+B is .
Open in App
Solution
I=1∫0x2e−x2dx⇒I=−121∫0x(−2xe−x2)dx Let u=x and v=−2xe−x2 Now, we use integration by parts. Putting e−x2=t⇒dt=−2xe−x2dx ⇒I=−12⎛⎜⎝[xe−x2]10−1∫0e−x2dx⎞⎟⎠⇒I=−12(e−1−a)⇒I=−12e+a2=Ae+aB