If 100π∫0sin2xe(xπ−[xπ])dx=απ31+4π2,α∈R, where [x] is the greatest integer less than or equal to x, then the value of α is:
A
50(e−1)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
100(1−e)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
150(e−1−1)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
200(1−e−1)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is D200(1−e−1) I=100π∫0sin2xexπ−[xπ]dx ∵ Integrand is periodic with period 1 ∴I=100π∫0sin2xe{xπ}dx
Let xπ=t⇒dx=πdt ⇒I=100π1∫0sin2(πt)dtet =50π1∫0e−t(1−cos2πt)dt =50π1∫0e−tdt−50π1∫0e−tcos(2πt)dt =−50π[e−t]10 −50π[e−t1+4π2(−cos2πt+2πsin2πt)]10 (∵∫eax⋅cosbxdx=eaxa2+b2(acosbx+bsinbx)+c) =−50π(e−1−1)−50π1+4π2(e−1(−1+0)−(−1+0)) =−50π(e−1−1)−50π1+4π2(1−e−1) =−50π(e−1−1)−50π(1−e−1)1+4π2 =200π3(1−e−1)1+4π2=απ31+4π3 (Given) ∴α=200(1−e−1)