The correct option is D cos(2k)=0
Given : k=4∫0dxx+√16−x2
Put, x=4siny
⇒dx=4(cosy) dy
when, x=0⇒y=0;
when, x=4⇒y=π2
Now, integral becomes :
k=π2∫04cosy4siny+4cosydy=π2∫0cosysiny+cosydy ⋯(i)
Using the property:
⎡⎢⎣b∫af(x)dx=b∫af(a+b−x)dx⎤⎥⎦
k=π2∫0sinysiny+cosydy⋯(ii)
Adding (i) and (ii):
⇒2k=π2∫0dy=π2
So, k=π4