The correct option is B A=π4,B=π4sinα
Let I=α∫0dx1−cosαcosx
=α∫0dxcos2x2+sin2x2−cosα(cos2x2−sin2x2)
=α∫0dx(1−cosα)cos2x2+(1+cosα)sin2x2
=α∫0dx2sin2α2cos2x2+2cos2α2sin2x2
=12α∫0sec2α2⋅sec2x2tan2α2+tan2x2 dx
Put tanx2=t⇒12sec2x2dx=dt
∴I=sec2α2tan(α/2)∫0dtt2+tan2α2
=sec2α2⋅cotα2⎡⎢
⎢⎣tan−1⎛⎜
⎜⎝ttanα2⎞⎟
⎟⎠⎤⎥
⎥⎦tan(α/2)0
=sec2α2⋅cotα2⋅π4
=π2sinα
∴ Possible values of A and B are
A=π2,B=0
and A=π4,B=π4sinα