If π/4∫0(cos2θ)32cosθdθ=aπ16√b, then the value of a+b is:
(where a and b are relative prime)
Open in App
Solution
I=π/4∫0(1−2sin2θ)32cosθdθLetsinα=√2sinθ⇒cosαdα=√2cosθdθ∴I=π/2∫0(cos2α)321√2cosαdα⇒I=1√2π/2∫0cos4αdα⎧⎪⎨⎪⎩∵π/2∫0cosnxdx=(n−1)n⋅(n−3)(n−2)⋯12⋅π2, when n is even⎫⎪⎬⎪⎭⇒I=1√2×34×12×π2=3π16√2∴a=3,b=2⇒a+b=5