No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
π2√2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
π√3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
π√2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is Dπ√2 π/4∫0(√sinxcosx+√cosxsinx)dx π/4∫0(sinx+cosx√sinxcosx)dx
Putting, sinx−cosx=u⇒du=(sinx+cosx)dx(sinx−cosx)2=u2⇒1−2sinxcosx=u2⇒1−u22=sinxcosx So the integration will be, I=√20∫−11√1−u2du ⇒I=[√2sin−1u]0−1⇒I=√2×π2=π√2