If π∫0√(cosx+cos2x+cos3x)2+(sinx+sin2x+sin3x)2dx has the value equal to (πk+√w) where k and w are positive integers, find the value of (k2+w2).
Consider the given integral.
I=π∫0√(cosx+cos2x+cos3x)2+(sinx+sin2x+sin3x)2dx
Substitute,
t=(cosx+cos2x+cos3x)2+(sinx+sin2x+sin3x)2
t=1+4cosx+4cos2x
t=(2cosx+1)2
Therefore,
I=π∫0√(2cosx+1)2dx
I=π∫0(2cosx+1)dx
I=2π/3∫0(2cosx+1)dx−π∫2π/3(2cosx+1)dx
I=[2sinx+x]2π/30−[2sinx+x]π2π/3
I=√3+2π3−π+√3+2π3
I=π3+2√3
Now, the value of the integral is equal to (πk+√w). Comparing this with the above result, we have
⇒k=3
⇒w=12
Therefore,
k2+w2=9+144=153
Hence, 153 is the required result.