wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If π/3π/4(sin3θcos3θcos2θ)(sinθ+cosθ+cos2θ)2010(sinθ)2012(cosθ)2012 dθ=(a+b)n(1+c)nd
where a,b,c and d are all positive integers, then the value of a+b+c+d is

Open in App
Solution

I=π/3π/4(sin3θcos3θcos2θ)(sinθ+cosθ+cos2θ)2010(sinθ)2012(cosθ)2012 dθ
I=π/3π/4(sin3θcos3θcos2θ)(sinθ+cosθ+cos2θ)2010(sin2θ)(cos2θ)(sinθ)2010(cosθ)2010 dθ
=π/3π/4(tanθsecθcotθ cosec θcosec2 θ)(secθ+cosec θ+cotθ)2010 dθ

Put secθ+cosec θ+cotθ=t
(tanθsecθcotθ cosec θcosec2 θ)dθ=dt
t2010 dt=12011t2011
I=12011(2+23+13)2011(2+2+1)2011
=12011[(2+3)2011(1+8)2011]
Hence, a=2,b=3,c=8 and d=2011
a+b+c+d=2024

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Substitution
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon