I=π/3∫π/4(sin3θ−cos3θ−cos2θ)(sinθ+cosθ+cos2θ)2010(sinθ)2012(cosθ)2012 dθ
I=π/3∫π/4(sin3θ−cos3θ−cos2θ)(sinθ+cosθ+cos2θ)2010(sin2θ)(cos2θ)(sinθ)2010(cosθ)2010 dθ
=π/3∫π/4(tanθsecθ−cotθ cosec θ−cosec2 θ)(secθ+cosec θ+cotθ)2010 dθ
Put secθ+cosec θ+cotθ=t
⇒(tanθsecθ−cotθ cosec θ−cosec2 θ)dθ=dt
∫t2010 dt=12011t2011
∴I=12011⎡⎣(2+2√3+1√3)2011−(√2+√2+1)2011⎤⎦
=12011[(2+√3)2011−(1+√8)2011]
Hence, a=2,b=3,c=8 and d=2011
⇒a+b+c+d=2024