wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If π0xcos2(sinx)dx=a then find value of π0sin2(sinx)dx?

Open in App
Solution

Given : π0xcos2(sinx)dx=a
I=π0xcos2(sinx)dx=a.........(1)I=π0(πx)cos2(sin(πx))dxI=π0(πx)cos2(sin(x))dx........(2)
Adding (1) and (2)
2I=π0πcos2(sin(x))dx2I=ππ0(1sin2(sinx))dx2I=π[π0dxπ0sin2(sinx)dx]2I=π(π0)π0sin2(sinx)dx
From equation 1
2a=π2π0sin2(sinx)dxπ0sin2(sinx)dx=π22a
Hence the correct answer is π22a

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Theorems in Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon