if ∫3π/4−π/4eπ/4dx(ex+eπ/4)(sinx+cosx)=k∫π2−π2secxdx,then the value of k is
A
12
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
1√2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
12√2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
−12√2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C12√2 I=∫3π/4−π/4dx√2(e(x−π4)+1)cos(x−π4) Putting x−π4=t, we get I=1√2∫π2−π2dt(et+1)cost =1√2∫π2−π2etdt(et+1)cost Adding, we get 2I=1√2∫π2−π2sectdt ∴I=12√2∫π2−π2secxdx∴k=12√2