If ∫sec4xdx=secmxtanxn+ktanx+C (C is integration constant), then the value of m+2n+3k is equal to
Open in App
Solution
I=∫sec4xdx=∫secI2x⋅secII2xdx
Applying integration by parts ⇒I=sec2x⋅tanx−∫tanx⋅2secx⋅secxtanxdx=sec2x⋅tanx−2∫sec2x(sec2x−1)dxI=sec2x⋅tanx−2I+2∫sec2xdx⇒3I=sec2x⋅tanx+2tanx+C⇒I=sec2x⋅tanx3+23tanx+C∴m=2,n=3,k=23 ⇒m+2n+3k=2+6+2=10