The correct option is C 3
Since ∫1sinxt2f(t)dt=1−sinx, thus to find f(x)
On differentiating both sides using Newton Leibnitz formula
i.e, ddx∫1sinxt2f(t)dt=ddx(1−sinx)
⇒{12f(1)}.(0)−(sin2x).f(sinx).cosx=−cosx
⇒f(sinx)=1sin2x
For f(1√3) is obtained when sinx=1√3
i.e, f(1√3)=(√3)2=3