I=∫sinx⋅ln(sinx) dx ↓II ↓I
Applying integration by parts
⇒I=ln(sinx)⋅(−cosx)−∫cosxsinx⋅(−cosx)dx =−ln(sinx)⋅cosx+∫1−sin2xsinxdx =−ln(sinx)⋅cosx+∫cosec x dx−∫sinx dx⇒I=−ln(sinx)⋅cosx+ln∣∣∣tan(x2)∣∣∣+cosx+C
⇒I=cosx(1−ln(sinx))+ln∣∣∣tan(x2)∣∣∣+C
⇒a=1, b=12
⇒ab=2