The correct options are
A a=13
C ϕ(x)=x+C
D b=−1
∫tan4xdx=atan3x+btanx+ϕ(x) ....(1)
Now ∫tan4xdx
=∫tan2x(sec2x−1)dx
=∫tan2xsec2xdx−∫tan2xdx
Put tanx=t
sec2xdx=dt
=∫t2dt−∫(sec2x−1)dx
=t33−tanx+x+C
=tan3x3−tanx+x+C
So, on comparing with (1), we get
a=13,b=−1
ϕ(x)=x+C